DATA SHEET

ZHEJIANG UNIU-NE Technology CO., LTD 浙江宇力微新能源科技有限公司

V 1.1

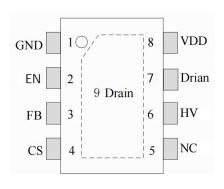
版权归浙江宇力微新能源科技有限公司

■ 产品描述

U3223E是一款高性能低成本 PWM 控制功率器,适用于离线式小功率降压型应用场合,外围电路简单、器件个数少。同时产品内置高耐压MOSFET可提高系统浪涌耐受能力。

与传统的 PWM 控制器不同, U3223E内部 无固定时钟驱动 MOSFET, 系统开关频率随负 载(轻载、重载)变化可实现自动调节。同时芯 片采用了多模式 PWM 控制技术,有效简化了外 围电路设计,提升线性调整率和负载调整率并消 除系统工作中的可闻噪音。此外,芯片内部峰值 电流检测阈值可跟随实际负载情况自动调节,可 以有效降低空载情况下的待机功耗。

U3223E集成有完备的带自恢复功能的保护功能: VDD 欠压保护、逐周期电流限制、输出过压保护、过热保护、过载保护和 VDD 过压保护等。


■ 典型应用

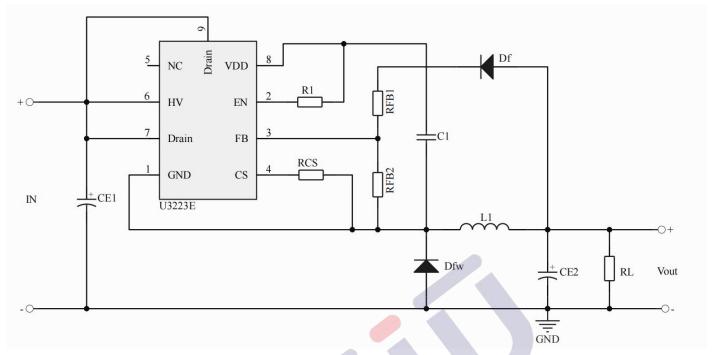
- 小家电电源
- 工业控制

■ 主要特点

- 集成5A 200V MOS
- 集成 200V 高压启动电路
- 使用范围: VIN-VOUT > 3V, Ipk < 3A
- BUCK&BOOST兼容
- 低功耗模式工作
- 支持降压和升降压拓扑
- 待机功耗低于 50mW
- 良好的线性调整率和负载调整率
- 集成软启动电路
- 内部保护功能:
 - ▶ 过载保护 (OLP)
 - ▶ 逐周期电流限制 (OCP)
 - ➤ 输出过压保护 (OVP)
 - ▶ VDD 过压、欠压和电压箝位保护

■ 封装信息

ESOP-8俯视图


■ 应用推荐

产品型号	封装	内阻	输出电压	MOS I _{PK}
U3223E	ESOP-8	0.44Ω	> 2V	3A

注: 1、默认降压型输出。 2、实际输出功率取决于输出电压和散热条件。

■ 应用原理图

■ 管脚功能描述

管脚	名称	1/0	描述
1	GND	Р	芯片的参考地
2	EN		驱动该引脚至逻辑高电平(1V)使能IC,驱动至逻辑低电平使能IC并进入 关闭模式
3	FB		反馈输入管脚
4	CS	0	峰值电流检测管脚
5	NC		建议悬空
6	HV	Р	内部高压
7	Drain	Р	内部高压MOSFET漏极
8	VDD	Р	芯片供电管脚,典型应用中VDD电容推荐采用100nF贴片电容
9	Drain	EP	内部高压MOSFET漏极(须与PCB有良好焊接)

■ 订货信息

型号	描述
U3223E	ESOP8 , 无卤、编带盘装, 4000 颗/卷

■ 功能描述

U3223E系列是一款集成高压启动和供电功能的多模式PWM 控制功率开关。该系列产品支持离线式非隔离降压和升降压型拓扑电路,适用于小家电电源和线性电源替代等场所。同时,U3223E具有输出精度高和外围成本低的特点。

● 电压调节

电压估算公式:
$$V_{OUT} = V_{FB} \times (1 + \frac{RFB1}{RFB2}) - V_{Dfw} + V_{Df}$$

在典型应用中:
$$V_{OUT} = 1.8V \times (1 + \frac{10K\Omega}{5.6K\Omega}) - V_{Dfw} + V_{Df}$$

$$\approx 5V$$

注: 电压计算会受续流二极管影响, 以实际调试为准。

● 电流调节

电流估算公式: $I_{PK} = \frac{V_{IPK}}{R_{CS}} = \frac{0.2V}{R_{CS}}$

注: 电压计算会受续流二极管影响, 以实际调试为准。

● 超低静态工作电流

U3223E的静态工作电流典型值为 200uA。如此低的工作电流降低了对于 VDD 电容大小的要求,同时也可以提高系统效率。

● 高压启动电路和超低待机功耗 (<50mW)

U3223E内置有一个 200V 高压启动单元。在开机过程中该启动单元开始工作,从 Drain 端取电并通过高压电流源对 VDD 电容进行充电,如"功能模块"中所述。当 VDD 电压上升至 VDD_ON,芯片开始工作且芯片工作电流增加至约 0.8mA。在稳态工作时,芯片通过反馈二极管由输

出进行供电,同时借助高压启动电路,系统待机功耗可以低至 50mW 以下。·

逐周期峰值电流限制和前沿消隐

U3223E内置的峰值电流检测阈值具有随系统工作频率变化而变化的特点,并通过 CS 管脚实现对电感峰值电流的调制。当 CS 管脚采样到的电压超过该阈值时,功率 MOSFET 立即关断直至下一开关周期开始。同时芯片内置有前沿消隐电路(消隐时间约300ns),消隐期间内部的逐周期峰值电流比较器将被屏蔽而不能关闭 MOSFET。

● 多模式 PWM 控制

为满足系统平均效率和空载待机方面的严格要求, U3223E采用了调幅控制 (AM) 和调频控制 (FM) 相结合的工作模式。

满载情况下系统工作于调幅模式 (AM); 重载至轻载阶段, 系统 同时工作于调频和调幅 模式 (FM+AM) 中,以达到良好的调整率和较高的系统效率; 当工作于空载附近时, 系统将重新进入调频模式以降低待机损耗。通过这种方式, 可以将系统 待机功耗降至 50mW 以下。

• 软启动

U3223E内集成有 3ms (典型值)的软启动电路,在芯片启动过程中系统开关频率逐渐增加,而且每次系统的重新启动都会伴随着一次软启动过程。

● 过载保护(OLP)/短路保护(SLP)

当 VOUT 输出短路或者过流的时候, 芯片内部消引逻辑会判断是干扰信号还是确实发生输出短路或者过流,这样就会避免误触发现象,如确实发生输出短路或者过流,会关断输出 MOS 和所有逻辑功耗,当输入从新上电后芯片恢复正常工作。

● 异常过流保护 (AOCP)

在某些情况下(如重载或者输出短路等),系统的电感电流峰值将上升过于剧烈。为避免电感峰值电流过大对系统元器件造成损坏,芯片内部设计有异常过流检测模块(AOCP,典型阈值为0.6V)。当CS电压高于该阈值时,芯片进入降频工作状态。

● 过热保护(OTP)

U3223E内部集成的过热保护电路会检测芯片的内部结温,当芯片结温超过150 ℃ (典型值)时,系统进入到自动重启模式。

● 优化的动态响应

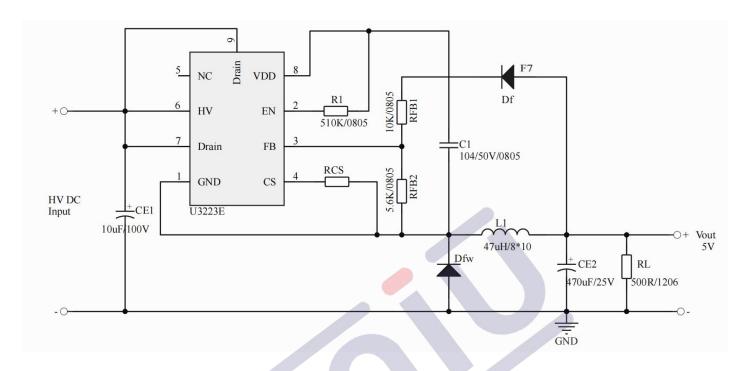
U3223E集成有快速动态影响功能,可降低负载切换时的输出电压跌落。

• 消除可闻噪音

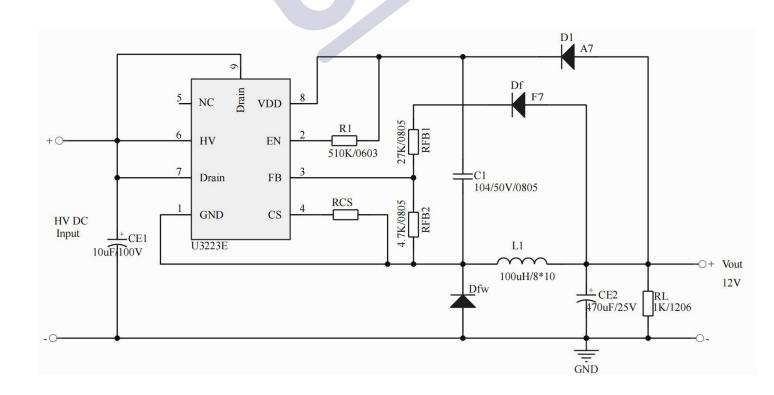
U3223E 通过采用频率调制和 CS 峰值电压调制调相结合的多模式控制方式,可实现在全负载范围内有效消除可闻噪音。

● VDD 过压保护(OVP)和 VDD 电压箝位

当 VDD 电压高于 VDD_OVP (典型值 28V)时,芯片将停止工作。随后 VDD 电压下降至 VDD_OFF,并进入重启模式。此外,芯片内部集成有 30V 稳压管, 避免 VDD 脚电压过高而损坏。

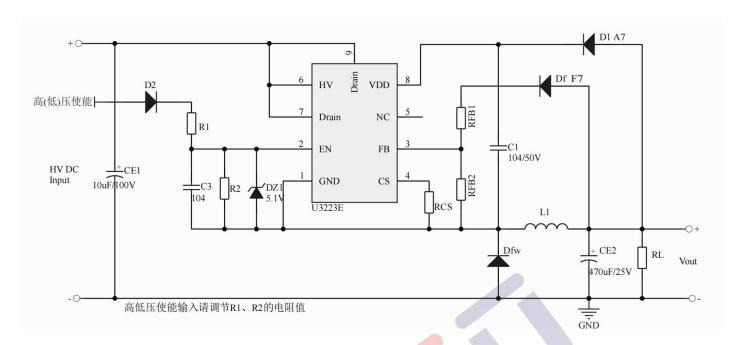

● 软驱动电路

U3223E内置有软驱动电路优化了系统 EMI 性能。



■ 应用实例

5V输出电路



12V输出电路

高(低)压使能输入电路

- 注: 1、典型应用电路及参数供参考,实际应用电路参数请在实测<mark>基础上</mark>设定,量产请和原厂沟通,其他不明请于我司工程师沟通联系。
 - 2、输入电解电容(CE1)和续流二极管(Dfw) 根据实际使用电压、电流来调节。
 - 3、RL建议负载电流为3~5mA,续流二极管建议使用肖特基。
 - 4、D1为自供电二极管,用于低电压启动,具体事宜请联系我司工程。

1、版本记录

DATE	REV.	DESCRIPTION
2022/07/06	1.0	首次发布
2023/03/06	1.1	应用电路FB增加二极管

2、联系我们

浙江宇力微新能源科技有限公司

总部地址:绍兴市越城区斗门街道袍渎路25号中节能科创园45幢4/5楼

电话: 0575-85087896 (研发部)

传真: 0575-88125157

E-mail:htw@uni-semic.com

无锡地址: 无锡市锡山区先锋中路 6 号中国电子 (无锡) 数字芯城 1#综合楼 503室

电话:0510-85297939

E-mail:zh@uni-semic.com

深圳地址: 深圳市宝安区西乡街道南昌社区宝源路泳辉国际商务大厦410

电话: 0755-84510976

E-mail:htw@uni-semic.com

重要注意事项:

1、绍兴宇力半导体有限公司和浙江宇力微新能源科技有限公司,简称"宇力",宇力保留说明书、应用指导书等的更改权,不另行通知。客户在采购时应获取我司最新版本资料,并验证相关信息是否最新和完整。产品使用前请仔细阅读本说明书、应用指导书等相关资料和其中的注意事项。

- 2、本产品属于消费类电子产品, 宇力对宇力产品的任何特定用途的适用性不做任何保证。 产品也不得应用在被任何适用法律或法规禁止制造、使用或销售的任何设备或系统中。 如果宇力的产品被用禁止产品或系统中, 此类应用产品的全部风险由客户自行承担, 宇力对此不承担任何责任。
- 3、本文件和产品的应用指导书等相关资料所描述的产品的应用仅用于说明参考,本文件提供的参数在不同应用中可能而且确实会有所不同,实际性能可能会随之变化。使用时需要进一步评估、测试和验证。宇力对产品应用或客户产品设计等方面的任何协助不承担责任。
- 4、客户须在产品的有效存储期内使用完毕,客户如对宇力产品的有效存储期有任何疑问的, 请即时联系宇力对接销售人员或宇力客户服务支持,对于超过存储期使用的,宇力不承 担任何责任。
- 5、未经宇力事先书面同意,不得对文件和产品进行拆解、更改、修改或者复制。
- 6、购买产品时请认清宇力商标和物料名称,如有疑问请联系宇力。第三方购买请注意是否为宇力授权的资质,同时在采购之前联系我司,以确认产品为宇力原厂正品。
- 7、客户在应用和使用产品时请务必遵守相关法规,包括但不限于贸易管制法规等。本产品为民用电子产品,请勿应用于非民用领域。
- 8、产品提升永无止境, 我公司将竭诚为客户提供更优秀的产品!

